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THE QUATERNION METHOD OF REGULARIZING INTEGRAL 
EQUATIONS OF THE THEORY OF ELASTICITY./. 

V. N. KUTRUNOV 

(Received 12 August 1991) 

Using quaternions [l], a new method of regularizing integral equations of the theory of elasticity is 

proposed which is identical for plane and spatial problems. The regularizors and the regularized equations 

are presented. The method does not use the theory of a symbol, as was done earlier [2-4], or the transition 

to the complex form [5]. The quaternion technique has not been applied so far to integral equations of the 

theory of elasticity but has been used to obtain the general solutions of LamB’s equations.$ 

Definition 1. Quatemions are numbers of the form a0 + aiei = a0 + a, where ei are the same square root of 
minus one, a0 and ai are real numbers (i = 1,2,3), and a is an imaginary quaternion. 

Operations with quatemions are defined by means of operations with the square root of minus one. If the 
square root of minus one is interpreted as unit vectors of a Cartesian basis, the operation of multiplication can 
be expressed in terms of scalar and vector products e; = -1, eiikek = eiej (i# j), where eijk is the Levi-Civita 
symbol. The table of multiplication enables the product of arbitrary quaternions z1 = u. + a and q = bo + b to 
be interpreted in terms of the operations of the scalar and vector products zlzl = 
uobo + a0 b + boa + a x b -a. b. The product of quaternions is non-commutative and the associative rule holds. 

Let z(xl, x2, x3) be any quaternion function and V = e$l&i be the quaternion Hamilton operator. 

Definition 2. The function z will be called a quatemion analytic (K-analytic) function if it satisfies the relation 
vz = 0. 

In the plane case, a function of two variables Z(X 1, x2) = zo(xl, x2) + eizi(xl, x2) but having three square 
roots of minus one will be considered. 

Let 1 be a closed piecewise smooth curve in the S plane, S+ the interior region bounded by the curve 1, .I- the 
‘exterior region, T and n vectors which are, respectively, tangent and normal to the curve 1, and let k be a vector 
which is perpendicular to the S plane, k = II X T. 

Vectors r, n and k may be resolved with respect to the basis el , e2, e3 where the unit vectors el and e2 belong 
to S, e3 I( k. The components may be interpreted as imaginary quaternion functions and a number of theorems 
may be formulated. 

Theorem 1. Let z and q be arbitrary quaternion functions of two variables x1, x2 differentiable in S+ and let n 
be an imaginary quaternion. The equality 

lznqdl = JzVqdS + $mdS (1) 
1 s+ s+ 

then holds [an over bar indicates the operation of conjugation (the sign before each of the imaginary unities of a 
quaternion is replaced by the opposite one)]. The theorem is proved by using Stokes’s formula which connects 
surface and curvilinear integrals. 

Weputh=V,lnIr(,wherer=Ix-yI,x,yES. 

Theorem 2. Let q(x) (x E S+) be an arbitrary quaternion which is continuous up to the boundary and has 
derivatives bounded in S+. We then have 

tPrik1. Mat. Mekh. Vol. 56, No. 5, pp, 864-868, 1992. 
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This is proved by substituting the quaternion z = h into Eq. (1). If the pointy E S+, it is necessary to remove 
a circle of radius E, centred at y, from the S+ domain, to write Eq. (1) and to let e go to zero. Note that V,h = 0 
everywhere except at the point x = y. 

Theorem 3. Let q(x) be an arbitrary quaternion which is continuous up to the boundary and has derivatives 
bounded in S-. Let limq(x) = 0 as Ix\-+ 00. This inequality, which differs from (2) in the sign before the first 
integral and in the notation of the S+ and S- domains then holds. 

Theorem 4. (The analogue of Gauss’ integral in the quaternion field.) For a piecewise-smooth curve 1 the 
equality 

0, YES- 

J(Y) = /hn, dl, = -w, yEI 
1 

-2n, YES 

holds, where w is the angle enclosed by the tangents to the curve at the point y E 1. 

Definition 3. The integral 

C&Y) = {hn,Q(x)dl,, Y ES* 

is called the analogue of the potential of a double layer (or the analogue of a Cauchy-type integral). 
Here q(x) is an arbitrary quaternion. For y E 1 the integral Q (y ) is singular. Let us consider the operator A 

AQ = n-‘Q(y), YE/ (3) 

Theorem 5. (The analogue of the Cauchy integral formula.) Let q(x) be a K-analytic function in the St 
domain; then its representation by means of the boundary value 

I 

0, yes- 

Q(Y) = -WQ(Y), Y El 

-2nQ(Y), YES+ 

holds. 
This is proved from Theorems 2 and 4. 
From Theorems 2 and 5 a similar result is obtained for functions which are K-analytical in the S- domain. 
Hence it holds that for the boundary values of such functions given in the S+ and S- domains we have, 

respectively, 

AQ = -n-‘WQ, AQ = n“(2n - w)q 

These equalities may be combined into one 

AQ = *Q 

for the Lyapunov curve o = rr. 

(4) 

(5) 

Theorem 6. The function Q(y) is K-analytic in both the S+ and S- domains. 
To obtain the proof it is necessary to apply to operator V, to the function Q(v), substitute it into the 

integrand and take into account that V,h = -V,h and V,h = 0 for x Zy. 

Theorem 7. Let a quaternion q(x) be specified on a piecewise-smooth curve 1 which may be continued into 
the S+ and S- domains retaining the Holder condition7 

tThe conditions of Theorem 7 may not be satisfied uniquely. If a function Q(X) satisfies the HBlder condition on the 

boundary I, then it has even a harmonic continuation into the S+ and S- domains. 
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I q(x’) - q(x”) I < c IX’ - x” Ia 
c > 0, O<a<l, x', x"ES+nS- 

Then for boundary values of the function Q (y ) we have 

Q+ = (-2n+w)q+nAq, Q- = wq+nAq (6) 

where Q * are the limit values as the pointy approaches the boundary from the S’ domains, respectively. 
The theorems given above resemble outwardly the set of well-known theorems of the theory of analytic 

functions, namely those of potential theory. The distinction lies in the presence of the quaternion functions and 
the quaternion products in them. 

Theorem 8. Let q(x) be an arbitrary quaternion which satisfies the conditions of Theorem 7. We then have 

Aaq = = -“(2wa-w’)q+n-‘(2n-2w)Aq (7) 

For the Lyapunov curve we obtain 

A=q = q (8) 

The proof of identity (7) follows from the first or the second of Eqs (4) after substituting the corresponding 
value Q+ or Q- [given in (o)] for q. It is possible to make this substitution because Q’ are the limit values of 
the K-analytic function Q. 

Theorem 9. Equality A = A-’ holds. 
The proof follows from (8) and holds for the Lyapunov curves 1. 
Putting Aq = p we obtain a pair of transformations from (8) 

Aq = P, AP = q (9) 

Let pO, p’, q,, and q’ be real and imaginary parts of the quaternion p and q. Using the vector and scalar 
interpretations of the multiplication of quatemions and separating the imaginary and real parts, it is possible to 
rewrite Eqs (9) in vector form. 

We will introduce the operators 

Bq, = n-‘.fq,h.nxdlx, Cq, = m“l$q,,h~n,dli 
I 1 

Dq’ = n -’ _f [ -q’h . ny + (h X nx) x q’] dl, 
I 

Fq’ = =-I /q. (h x n)dl, 
I 

Then Eqs (9) take the form 

-Bq, - Fq’ = ~0, cq, +Dq, = p’ 

-BP, -FP’ = qO, cp, +Dp’ = q’ 

Henceforth we will omit the primes on the vectors p’ and q’. 

(10) 

(11) 

(12) 

Theorem 10. The operators C, D and F are singular, and the operator B is completely continuous. 
The integral BpO is known as the double-layer potential. 
Up to now, it has been implied that q = q (x1 , x2) ( x1 , x2 ES) and that the vector q has any direction. Let us 

now assume that it lies in the S plane. 

Theorem Il. Let q_L k. Then we have 

Fq = 0, Cq, II k, Dqlk (13) 

FDq = 0, q,, + B”q, = -FCqO, Dq, = CBq, (14) 

Da; = q (15) 

Proof. For x, y E S the vector h lies in the S plane. Hence Eq. (13) follows at once from definition (10) of the 
operators F, C and D. 

We find pc = -Bqo and p = Cq, + Dq from Eqs (11) and (13). Substituting p. and p into (12) and using the 
fact that q. and q are arbitrary, we obtain Eqs (14) and (15). 
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The integral equations of the plane state of strain, obtained by using the Somigliana identity (the direct 
statement), have the form 

0Su+Gu = %u-(YDU-@BTLI = Kf (16) 

where (Y = (1- u)l(4(1- v)), p = l/(2(1 - JJ)), and u(x) and f(x) are the displacement and stress vectors 
defined at the points x of the boundary 1. 

The operator D is given by formula (lo), and 

Kf = If W . W,Y) dl 
I 

Ll(X,Y) = - &“_ “) [(3 - 4v)I In I r I - rhl 

where E is Young’s modulus, v is Poisson’s ratio, I is the unit matrix, and rh is the dyadic product of the vectors 
randh[6]. 

Operator Tin (16) is completely continuous, the form of which is henceforth not important. 
All the singularity of integral equation (16) is contained in the operator D. 

Theorem 12. The operator R = OX+ aD is the equivalent regularizor of Eq. (16). The regularized equation 
has the form 

ii),25 - CX’)U - pRZh = RKf (17) 

Proof. Multiplying (16) by the operator R and taking into account identity (15), we obtain Eq. (17). The 
complete continuity of the operator R. T follows from the fact that one of the factors, that is the operator T, is 
completely continuous. 

By virtue of (1.5), which holds for every q, the homogeneous equation R, = 0 has only a trivial solution for 

a# +OS. For this reason [3] the regularization will be equivalent. 

Theorem 13. The operator R’ = 0.51- G is the equivalent regularizor of Eq. (16). The regularized equation 
has the form 

0,25u - G=u = R’Kf (18) 

Proof. Since we can always add any completely continuous operator to the regularizor [2], the operator 
R’ = R + PT is a regularizor. Squaring the operator G and taking into consideration identity (15), we can write 

the regularized equation (18) explicitly as 

G= = hD+pT)= = a= I + p’ T’ + c@(DT + TD) (19) 

The regularized equation (18) may be preferable for calculations because 
(i) the norm of the operator G2 is smaller than the norm of the operator G, and 
(ii) the number of arithmetic operations decreases when Eq. (19) is used (since we skip the calculation of 

D’). 
For the indirect statement, the first and the second problems of the theory of elasticity are reduced to the 

problem of finding the density vectors cp and $ of certain potentials 

*0,51p+Glp = u, +0,5$ +G+$ = f (20) 

The operator G * is conjugate with respect to the operator G. It can be shown that G * = +aD + T, , where 
T1 is a specified completely continuous operator. Therefore the scheme for regularizing Eqs (20) is identical 
with that for regularizing Eq. (16). In particular, any of the operators ?0.51+ aD, f0.51- G and +0.51-G* is 
the regularizor of Eq. (20). All these operators are identical up to the completely continuous summands. 

The quaternion technique of regularization may also be extended to the integral equations of spatial 
problems of the theory of elasticity. Assertions are known concerning the need to distinguish the cases of one 
and several variables in the theory of regularization [2, p. 7; 3, p. 1971. 

For the case of spatial problems Theorems l-10 also hold if a number of changes are carried out. 
Instead of the plane domains S+ and S- bounded by a contour 1, we will consider the three-dimensional 

domains V+ and V- enclosed by a surface S. The quantity -l/] r 1 is substituted for the function In 1 r 1 and 272 is 
substituted for n. These substitutions have also to be carried out in the operators B, C, D and F. 
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For the case of spatial problems, Theorems l-10 may partly be obtained by formulating the results of [7,8] in 
quaternion form. 

The integral equations of spatial problems of the theory of elasticity presented in operator form are (16) and 
(20). The operators G, G*, K may be taken from [6]. 

It is important that the representations G = -CUD + TI and G * = -_(yD + T2 where TI and T2 are the specified 
completely continuous operators, are made, i.e. equalities D = -G/a = -G*/c~ hold, the last of them being 
known [9]. 

Instead of Theorem 11 we prove the following one. 

Theorem 14. For the operators B, C, D and F the identities 

hold. 

B”q, - FCq, = qO, -BFq + FDq = 0 

-CBq, + mq, = 0, -CFq+D’q = q (21) 

Proof. Eliminating the quantitypo andp’ from Eqs (11) and (12) and then substituting zero values for q. and 
q’ successively, we obtain the identities (21). 

Theorem 15. The operator D3 - D is completely continuous. 

Proof. The following corollary may be obtained from Eqs (21) 

D’q - lkj = CBFq (22) 

The operator D3 - D is completely continuous because it may be replaced by the composition CBF which 
contains the completely continuous multiplier B. 

Theorem 16. The operator 

is the regularizor of Eq. (16). 

%CY-‘(1 -4a”)I+‘/icr-‘D+D’ = R (23) 

The regularized equation has the form 

O,125a-‘(1 - 4a’) u - aCBFu + RT,u = RKf (24) 

Proof. Let R be a second degree polynomial in D with undetermined coefficients. Multiplying Eq. (16) by R 
and using (22) we select the coefficients so as to eliminate the powers of the operator D. We obtain the 
statements of the theorem. 

Substituting -G/a or G */cu for D in (23) we obtain the regularizors in terms of the original operators G or 
G *, for example 

R’ = ?4(1 - 4aa)I - MG + G’ (25) 

As the spectrum of G is real, the equation Rh = 0 has only a trivial solution. Hence R’ is the equivalent 
regularizor. 

For Eqs (20) the regularizors may be obtained from (25). To do this we multiply Eqs (20) by 6 = +l. This 

gives 

lp+hGcp = 6u, $+~G*$I = su 

Substituting 6G or 6G * for G in (25) we obtain the equivalent regularizors which are suitable for any of Eqs 

(20). 
Some of the regularizors of the type (25) were obtained previously in [4] by using the theory of a symbol. 

1. 

2. 
3. 
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